四虎 在线播放-四虎 2022 永久网站-四房婷婷-四房色播开心网-四方色播-四大名著成人高h肉版

Robust Servo Motors Survive Space X Launch Conditions

0Comments 2320Views Category:Applications Case

Robust Servo Motors Survive Launch Conditions to Optimize Rocket Fuel Burn

The Falcon 9 launch vehicle consists of a payload nacell atop two stages. Stage one consists of nine engines (lower black band) fed by a fuel tank above it. Stage two consists of one engine (upper black band) and a corresponding fuel tank.

Amid tightening budgets, space agencies are increasingly looking to the commercial space sector to provide the launch vehicles of the future, and Space Exploration Technologies (SpaceX) is right there to help. The company builds high-reliability, economical launch vehicles like the Falcon 9 to carry a range of payloads into orbit (see figure 1). One way to control cost is by optimizing fuel burned during launch to minimize waste. The SpaceX team ensures top performance with the help of a special fuel-trim valve, powered by robust, reliable servo motors from MICROMO (the FAULHABER Group).

Rockets like the Falcon 9 and Falcon 1 at SpaceX burn a fuel known as RP-1, a highly refined form of kerosene that must be mixed with oxygen in order to burn. On the launch vehicle, 4-in pipes run from tanks of RP-1 and liquid oxygen (LOX) to combine prior to entering the combustion chamber.

The combustion chemistry of RP-1 is forgiving. The fuel won’t burn without oxygen, but as long as oxygen is present, the two do not need to be combined in a precise ratio. “If the mixture is slightly lean, it is still going to burn decently," says Juerg Frefel, Avionics Engineer at SpaceX. The problem is that if the ratio of LOX to RP-1 varies from the optimum mix, either the oxygen will run out before the fuel or the fuel before the oxygen. Once combustion stops, the material left becomes dead weight, turning from propellant to liability. To ensure this doesn’t happen, the fuel-trim valve adjusts the mixture in real time.


The fuel-trim device consists of a servo-motor-controlled butterfly valve. To achieve the proper speed and torque, the design incorporates a planetary gearbox for a roughly 151:1 reduction ratio, plus additional gearing internal to the unit. The team qualified the components with a significant safety margin to protect against common-mode failure. The shaft of the motor interfaces with the valve directly to make fine adjustments. “The basic mixture ratio is given by the sizing of the tubes, and a small amount of the flow of each one gets trimmed out,” explains Frefel. “We only adjust a fraction of the whole fuel flow.”

The Falcon 9 launch vehicle is a two-stage vehicle with a total of ten engines, each with its own fuel-trim valve. To ensure the proper mix, the valve operates in a double closed loop based on feedback from a triplicate feedback mechanism. The first stage features nine engines that burn for approximately three minutes, and the second stage includes one engine that burns for approximately seven minutes (see figure 2). Because of the duration of the burn for each stages, the control loops can actually run relatively slowly. “The whole valve doesn't necessarily need to be fast,” says Frefel. “It's a closed-loop system, which means that the command to the valve is to go to a certain angle. The outer loop adjusts the angle of the valve and the inner loop keeps the position steady in case it gets pushed around [by shock/vibration].”

Tough Enough  Accuracy aside, the characteristics most applications require from servo motors tend to be high torque, high speed, or small size. In the case of the fuel-trim valve, the chief motor requirement was simple: They had to survive launch. The shock and vibration produced in the first stage, in particular, are extreme (see figure 3). “For the three minutes of the first stage, the engine is producing 100,000 lb. of thrust,” says Frefel. “It's quite a violent event and [the fuel-trim valve] is right next to the engine.”

When the engineering team set out to qualify components for the fuel-trim valve, vibration testing caused motor after motor to fail. “We have vibration fixtures and tables here where we can simulate the engine environment,” says Frefel. “We basically went through a whole bunch of motors from different vendors to see which one would hold up." To minimize points of failure, they switched from brushed to brushless motors. “The main performance issue for us was could it survive the environment? That meant that the gearbox stayed on, the Hall-effect sensors weren’t damaged, that nothing bad happened in the extreme environment. We just [kept looking] until we found the manufacturer of motors that survived.” In the end, that manufacturer was MICROMO.Rocket engines produce heat as well as vibration, but contrary to what a person might think, thermal management does not pose a significant challenge in this application.Much of the heat is radiated and is reflected away. In addition, given the relatively brief duration of the stages, the unit’s thermal mass makes it resistant to rapid temperature swings. “The actuator still has three to four pounds of mass, which means that in three minutes it doesn't heat up that dramatically,” Frefel says.

Interestingly, the thermal issue he does mention is low, not high temperatures. During the second stage, for example, the engines may fire only briefly. The vehicle can then coast for as long as 45 min before a second burn takes place. By this point, the rocket is outside of the atmosphere, where temperatures can be quite low.

To control cost and production timelines, the SpaceX philosophy is to try to work with stock components whenever  


possible. Nothing special was done to the MICROMO motors to ruggedize them for the application; the design team simply ordered standard products. Leveraging MICROMO's express prototyping program, the SpaceX team was able toobtain samples in very short time frames. "They were either in stock in the United States or they had them within a few days," said Frefel. “They do a good job of having small volumes that can allow you to try out different gear ratios for different topologies. I was quite impressed by how easy it was.

"As schedule and budgetary pressures cause NASA to increasingly lean toward commercial orbital transportation services, opportunity in this sector is on the rise. With the help of MICROMO, SpaceX delivers robust, reliable technology at an appealing price point.





頂一下
(2)
100%
踩一下
(0)
0%

發表評論共有0訪客發表了評論

    暫無評論,快來搶沙發吧!

我來說幾句吧

驗證碼: 看不清楚?
主站蜘蛛池模板: 狠狠躁天天躁夜夜躁婷婷| 亚洲狠狠色丁香婷婷综合| 无码专区人妻系列日韩精品| 饥渴少妇videos| 国产午夜成人久久无码一区二区| 黄网在线观看免费网站| 亚洲经典千人经典日产| 天堂av无码av日韩av| 日本高清h色视频在线观看| 色噜噜久久综合伊人一本| 2020狠狠操| 日本大尺度吃奶呻吟视频| 亚洲婷婷影院| 成年午夜无码av片在线观看| 日韩人妻熟女中文字幕| 97人人在线视频| 欧洲美熟女乱又伦免费视频| 中文在线资源链接天堂| 亚洲人成在线影院| 国产一起色一起爱| 中文字幕无码无码专区| 中文在线а天堂中文在线新版| 毛片三级在线观看| 免费女人高潮流视频在线观看| 国产人成视频在线视频| 精品亚洲成a人在线观看| 欧洲无码一区二区三区在线观看 | 午夜一级毛片| 欧洲熟妇色xxxx欧美老妇免费 | 欧美精品一级| 中文字幕一区二区三区日韩精品| 久久午夜夜伦鲁鲁片免费无码 | 国模无码一区二区三区| 人妻少妇乱子伦无码视频专区| 精品人妻系列无码人妻免费视频| 亚洲日本一区二区一本一道| 99精品在线| 欧美成人在线视频| 色www视频永久免费| 在线看片无码永久免费aⅴ| 亚洲五月激情综合图片区|